Theorem 0.1. For any set A, we have $A \leq_T A'$, where $A' = \{x : \phi_x^A(x) \downarrow\}$.

Proof. There are two parts to this proof: $A \leq_T A'$, and $A' \not\leq_T A$. We first show $A \leq_T A'$. Given access to the oracle for A', we wish to construct a Turing machine M that decides whether some arbitrary $x \in \mathbb{N}$ is in A or not. Consider the following procedure:

 $\begin{array}{ll} M(x): & \mbox{Construct (but don't run) the following A-oracle Turing machine M_x:} \\ & M_x(y): & (Ignore y) \\ & & \mbox{If $x \in A$:} \\ & & \mbox{Halt.} \\ & & \mbox{Else:} \\ & & \mbox{Loop.} \end{array}$ Find the Gödel number \$e_x\$ of \$M_x\$, so that \$M_x(y) = \$\phi^A_{e_x}(y)\$.} \\ & \mbox{If \$e_x \in A'\$:} \\ & \mbox{Accept.} \\ & \mbox{Else:} \\ & \mbox{Reject.} \end{array}

Notice that M(x) constructs an *A*-oracle Turing machine M_x , but never actually consults the *A*-oracle as we don't run M_x . Also notice that $M_x(y)$ halts if and only if $x \in A$, regardless of the value of y.

So $x \in A$ if and only if $M_x(e_x)$ halts, which happens if and only if $\phi_{e_x}^A(e_x) \downarrow$. So M(x) accepts if and only if $x \in A$, which means M (which uses an A'-oracle) serves as a decider for A. Thus $A \leq_T A'$.

To show $A' \not\leq_T A$, suppose towards a contradiction that $A' \leq_T A$. So $I_{A'}$ is A-computable. Define the following function f:

$$f(x) = \begin{cases} 0 & I_{A'}(x) = 0\\ \text{undefined} & I_{A'}(x) = 1. \end{cases}$$

If we can compute $I_{A'}$ then we can compute f, and since $I_{A'}$ is A-computable, this means f is A-partial computable. So $f = \phi_e^A$ for some $e \in \mathbb{N}$.

If $e \in A'$, then $I_{A'}(e) = 1$, so f(e) is undefined. But $e \in A' \Leftrightarrow \phi_e^A(e) \downarrow$, and since $f = \phi_e^A$, f(e) should be defined, contrary to the previous sentence.

If $e \notin A'$, then $I_{A'}(e) = 0$, so f(e) is defined. But $e \notin A' \Leftrightarrow \phi_e^A(e) \uparrow$, so f(e) should be undefined, again a contradiction.

We conclude that $A' \leq_T A$ is false.